设椭圆X∧2/9+Y∧2/3=1的长轴两端点为M,N,点P在椭圆上,求证PM与PN的斜率之积为定值

问题描述:

设椭圆X∧2/9+Y∧2/3=1的长轴两端点为M,N,点P在椭圆上,求证PM与PN的斜率之积为定值

椭圆:x^2/9+y^2/3=1
长轴的二个顶点坐标分别是M(-3,0),N(3,0)
设P坐标是(x,y)
那么K(PM)=y/(x+3),K(PN)=y/(x-3)
K(PM)*K(PN)=y^2/(x^2-9)
又P在椭圆上,则有x^2/9+y^2/3=1
x^2+3y^2=9
y^2=(9-x^2)/3
所以,K(PM)*K(PN)=-1/3,(为定值)

证明:椭圆x²/9+y²/3=1a²=9,b²=3端点M(3,0),端点N(-3,0)设点P为(m,n)在椭圆上,则:m²/9+n²/3=1m²=9-3n²PM斜率Kpm=(n-0)/(m-3)=n/(m-3)PN斜率Kpn=(n-0)/(m+3)=n/(m+3)...