已知抛物线y=ax2+bx+3(a不等于0)与x轴交于点a(1,0)和点b(-3,0),与y轴交于点c(1)求抛物线的解析式(2)设抛物线的对称轴与x轴交于点m,问在对称轴上是否存在点p,使三角形cmp为等腰三角形,若存在,请求出p点的坐标(4种情况)(3)若点e为第二象限抛物线上一动点,连接be,ce,求四边形boce面积的最大值,并求出此时e点的坐标

问题描述:

已知抛物线y=ax2+bx+3(a不等于0)与x轴交于点a(1,0)和点b(-3,0),与y轴交于点c
(1)求抛物线的解析式
(2)设抛物线的对称轴与x轴交于点m,问在对称轴上是否存在点p,使三角形cmp为等腰三角形,若存在,请求出p点的坐标(4种情况)
(3)若点e为第二象限抛物线上一动点,连接be,ce,求四边形boce面积的最大值,并求出此时e点的坐标

(1)由题意知 方程 ax^2+bx+3=0的两根分别是 1,--3所以 由韦达定理可得:1+(--3)=--b/a1*(--3)=3/a由此解得:a=--1,b=--2所以 所求抛物线的解析式为:y=--x^2-2x+3 (2)抛物线与Y轴交点C的坐标是:C(0,3)抛物线的...