求导数的相关题x=ln(1+t^2)y=arctant求d^2 y/dx^2=

问题描述:

求导数的相关题
x=ln(1+t^2)
y=arctant
求d^2 y/dx^2=

-(t^2+1)/(4t^3)
dy/dt=1/(t*t+1)
dx/dt=2t/(t*t+1)
dy/dx=1/2t
d^2 y/dx^2=[d(1/2t)/dt]*(t*t+1)/2t=-(t^2+1)/(4t^3)