如图所示,A、B两村在河岸CD的同侧,A、B两村到河岸的距离分别为AC=1km,BD=3km,又CD=3km,现要在河岸CD上建一水厂向A、B两村输送自来水,铺设水管的工程费用为每千米20000元,请你在CD上选择水厂的位置O,使铺设水管的费用最省,并求出铺设水管的总费用.

问题描述:

如图所示,A、B两村在河岸CD的同侧,A、B两村到河岸的距离分别为AC=1km,BD=3km,又CD=3km,现要在河岸CD上建一水厂向A、B两村输送自来水,铺设水管的工程费用为每千米20000元,请你在CD上选择水厂的位置O,使铺设水管的费用最省,并求出铺设水管的总费用.

如图所示,点O就是建水厂的位置,
∵AC=1km,BD=3km,CD=3km,
∴AE=AC+CE=AC+DB′=AC+BD=1+3=4km,
B′E=CD=3km,
AB′=

AE2+B′E2
=
42+32
=5km,
铺设水管长度为:AO+OB=AO+OB′=AB′=5km,
∵铺设水管的工程费用为每千米20 000元,
∴铺设水管的总费用为:5×20 000=100 000元.
故答案为:100 000元.
答案解析:作出点B关于CD的对称点B′,连接AB′交CD于点O,连接BO,根据对称性可知,在点O处建水厂,铺设水管最短,所需费用最低.
考试点:作图—应用与设计作图;轴对称-最短路线问题.
知识点:本题考查了应用与设计作图,主要利用轴对称的性质,找出点B关于CD的对称点是确定建水厂位置O的关键.