已知xy^2=-2求xy(2x^3y^7+5x^2y^5-y)的值

问题描述:

已知xy^2=-2求xy(2x^3y^7+5x^2y^5-y)的值

原式=xy^2(2x^3y^6+5x^2y^4-1)
=-2 (2(xy^2)^3 + 5 ( xy^2) ^2 -1 )
=-2 (2*(-8) + 5*4 -1 )
=-6

xy(2x^3y^7+5x^2y^5-y)
=xy[2y(xy^2)^3+5y(xy^2)^2-y]
=xy[2y(-2)^3+5y(-2)^2-y]
=xy(-16y+20y-y)
=3xy^2
=3*(-2)
=-6