试证:对任意的正整数n,有11×2×3+12×3×4+…+1n(n+1)(n+2)<14.

问题描述:

试证:对任意的正整数n,有

1
1×2×3
+
1
2×3×4
+…+
1
n(n+1)(n+2)
1
4

证明:∵

1
n(n+1)(n+2)
=
1
2
[(
1
n
-
1
n+1
)-(
1
n+1
-
1
n+2
)],
1
1×2×3
+
1
2×3×4
+…+
1
n(n+1)(n+2)
=
1
2
[(1-
1
2
)-(
1
2
-
1
3
)]+…+
1
2
[(
1
n
-
1
n+1
)-(
1
n+1
-
1
n+2
)]=
=
1
2
[(1-
1
2
)-(
1
n+1
-
1
n+2
)]<
1
4

答案解析:利用裂项法,
1
n(n+1)(n+2)
=
1
2
[(
1
n
-
1
n+1
)-(
1
n+1
-
1
n+2
)],再叠加,即可得出结论.
考试点:不等式的证明.
知识点:本题考查不等式的证明,考查裂项法的运用,属于中档题.