试证:对任意的正整数n,有11×2×3+12×3×4+…+1n(n+1)(n+2)<14.
问题描述:
试证:对任意的正整数n,有
+1 1×2×3
+…+1 2×3×4
<1 n(n+1)(n+2)
. 1 4
答
证明:∵
=1 n(n+1)(n+2)
[(1 2
-1 n
)-(1 n+1
-1 n+1
)],1 n+2
∴
+1 1×2×3
+…+1 2×3×4
=1 n(n+1)(n+2)
[(1-1 2
)-(1 2
-1 2
)]+…+1 3
[(1 2
-1 n
)-(1 n+1
-1 n+1
)]=1 n+2
=
[(1-1 2
)-(1 2
-1 n+1
)]<1 n+2
.1 4
答案解析:利用裂项法,
=1 n(n+1)(n+2)
[(1 2
-1 n
)-(1 n+1
-1 n+1
)],再叠加,即可得出结论.1 n+2
考试点:不等式的证明.
知识点:本题考查不等式的证明,考查裂项法的运用,属于中档题.