若实数x,y,m,n满足x^2+y^2=a,m^2+n^2=b,求mx+ny的取值范围

问题描述:

若实数x,y,m,n满足x^2+y^2=a,m^2+n^2=b,求mx+ny的取值范围

x^2+y^2=a,设x=√a*cosα ,y=√a*sinαm^2+n^2=b ,设m=√b*cosβ ,n=√b*sinβmx+ny=√ab*cosαcosβ+√ab*sinαsinβ=√ab(cosαcosβ+sinαsinβ)=√ab*cos(α-β)因为-1≤cos(α-β)≤1,所以,-√ab≤mx+ny≤...