sinx小于x证明; tanx在实数范围内与x的关系是怎样的?
问题描述:
sinx小于x证明; tanx在实数范围内与x的关系是怎样的?
怎样证明sinx在实数范围内都比x小,tanx在实数范围内与x的关系是怎样的?
答
第一个证明可以构造函数:F(x)=x-sinx
求导得:F'(x)=1-cosx>0 所以F(x)为增函数
F(x)>=F(0)=0
依这种思想可以推的它们的关系,也可以用图形法:即在单位圆内,面积相同的方法证明.
至于第二个问题:tanx为周期函数,且在一个周期内可以是无穷大,而x是一个增函数,所以二者没有一个很好的数量关系,一定要说有的话就要分区间去比较,你画出二者的图象会看的比较明显.