求曲线y=-1/x在x=2处的切线方程

问题描述:

求曲线y=-1/x在x=2处的切线方程

y=-1/x
2边同时向x求导
dy/dx=1/x^2
dy/dx│x=2 =1/4
把x=2代入曲线y=-1/x
y=-1/2 →∴切点为(2,-1/2)
∴所求方程为y+1/2=1/4(x-2)
y+1/2=x/4-1/2
4y+2=x-2
x-4y-4=0