求cosa+cos(a+2π/n)+cos(a+2·2π/n)+……+cos【a+(n-1)2π/n】的值

问题描述:

求cosa+cos(a+2π/n)+cos(a+2·2π/n)+……+cos【a+(n-1)2π/n】的值

=e^ia+e^i(a+2π/n)+e^i(a+2*2π/n)+.+e^i(a+(n-1)*2π/n)的实部
e^ia+e^i(a+2π/n)+e^i(a+2*2π/n)+.+e^i(a+(n-1)*2π/n)=e^ia(1+t+t^2+...+t^(n-1))
其中t=e^i(2π/n),且t^n=1
因(1+t+t^2+...+t^(n-1))=(1-t^n)/(1-t)=0
故cosa+cos(a+2π/n)+cos(a+2·2π/n)+……+cos【a+(n-1)2π/n】=0