求f(x)=3sin(-2x+π/3)+2的单调区间

问题描述:

求f(x)=3sin(-2x+π/3)+2的单调区间

f(x)=3sin(-2x+π/3)+2可化为f(x)=3sin(2x+2π/3)+2又因为sinx的单调区间为(π/2+2kπ,3π/2+2kπ)又因为f(x)=Asin(wx+θ)+K中决定单调区间的为w和θ,与A和K无关所以代入2x+2π/3属于(π/2+2kπ,3π/2+2kπ)解得...