阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.
问题描述:
阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.
例如:(x-1)2+3、(x-2)2+2x、( x-2)2+ x2是x2-2x+4的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项--见横线上的部分).
请根据阅读材料解决下列问题:
(1)比照上面的例子,写出x2-4x+2三种不同形式的配方;
(2)将a2+ab+b2配方(至少两种形式);
(3)已知a2+b2+c2-ab-3b-2c+4=0,求a+b+c的值.
答
(1)x2-4x+2的三种配方分别为:
x2-4x+2=(x-2)2-2,
x2-4x+2=(x+ 2)2-(2 2+4)x,
x2-4x+2=( 2x- 2)2-x2;
(2)a2+ab+b2=(a+b)2-ab=(a+ 12b)2+ 34b2;
(3)a2+b2+c2-ab-3b-2c+4=(a- 12b)2+ 34(b-2)2+(c-1)2=0,
从而有a- 12b=0,b-2=0,c-1=0,
即a=1,b=2,c=1,
∴a+b+c=4.