已知w^2+x^2+y^2+z^2+f^2=16求f=8-w-x-y-z的最大值

问题描述:

已知w^2+x^2+y^2+z^2+f^2=16求f=8-w-x-y-z的最大值

依题意有f^2=16-(x^2+y^2+z^2+w^2).1若f=8-w-x-y-z 则2f=16-2w-2x-2y-2z.21式加上2式有f^2+2f=32-(w^2+2w+x^2+2x+y^2+2y+z^2+2z)=32-[(w+1)^2+(x+1)^2+(y+1)^2+(z+1)^2]+4所以f^2+2f-36= -【(w+1)^2+(x+1)^2+(y+1)...