如图+抛物线所示y=ax²+bx-4与x轴交于点A(4,0),B(-2,0)两点,与y轴交于点C,点P是线段AB上一动点

问题描述:

如图+抛物线所示y=ax²+bx-4与x轴交于点A(4,0),B(-2,0)两点,与y轴交于点C,点P是线段AB上一动点
1.(2012•济宁)如图,抛物线y=ax2+bx-4与x轴交于A(4,0)、B(-2,0)两点,与y轴交于点C,点P是线段AB上一动点(端点除外),过点P作PD∥AC,交BC于点D,连接CP.
(1)求该抛物线的解析式;
(2)当动点P运动到何处时,BP2=BD•BC;
(3)当△PCD的面积最大时,求点P的坐标.

⑴、由抛物线与X轴有两个交点,可以由两根式设抛物线解析式为:y=a﹙x+2﹚﹙x-4﹚∴y=ax²-2ax-8a=ax²+bx-4,比较系数得:a=½,b=-1∴y=½x²-x-4,∴C点坐标为C﹙0,-4﹚;⑵、∵OA=OC=...