12.已知直线y=-x+1与椭圆x*2/a*2+y*2/b*2=1(a>b>0)相交于A,B两点,且线段AB的中点

问题描述:

12.已知直线y=-x+1与椭圆x*2/a*2+y*2/b*2=1(a>b>0)相交于A,B两点,且线段AB的中点
12.已知直线y=-x+1与椭圆x*2/a*2+y*2/b*2=1(a>b>0)相交于A,B两点,且线段AB的中点在直线L:x-2y=0上;(II)若椭圆的右焦点关于直线L的对称点在圆x*2+y*2=4上,求此椭圆的方程

将y=-x+1代入椭圆方程得(b*2+a*2)x*2-2a*2x+a*2-a*2b*2=0,判别式>0,得4a*2b*2(b*2+a*2-1)>0,即b*2+a*2>1,应用韦达定理,中点横坐标=a*2/(b*2+a*2),由y=-x+1,得中点纵坐标=b*2/(b*2+a*2),因中点在x-2y=0上,所以a...