已知圆x^2+y^2=4上一点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点.

问题描述:

已知圆x^2+y^2=4上一点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点.
(1)求线段AP中点的轨迹方程.
(2)若∠PBQ=90°,求PQ中点的轨迹方程.

(1)求线段AP中点的轨迹方程
AP中点(x,y)
xP=2x-2,yP=2y
x^2+y^2=4
(2x-2)^2+(2y)^2=4
AP中点的轨迹方程:(x-1)^2+y^2=1
(2)若角PBQ=90°,求PQ中点的轨迹方程
PQ中点(x,y)
xP+xQ=2x,(xP+xQ)^2=(2x)^2
(xP)^2+(xQ)^2+2xP*xQ=4x^2.(1)
yP+yQ=2y
(yP)^2+(yQ)^2+2yP*yQ=4y^2.(2)
(xP)^2+(yP)^2=4.(3)
(xQ)^2+(yQ)^2=4.(4)
角PBQ=90°
k(PB)*k(QB)=-1
[(yP-1)/(xP-1)]*[(yQ-1)/(xQ-1)]=-1
xP*xQ+yP*yQ=(xP+xQ)+(yP+yQ)-2=2x+2y-2
2xP*xQ+2yP*yQ=4x+4y-4.(5)
(1)+(2)-(3)-(4)-(5):
x^2+y^2-x-y-1=0
PQ中点的轨迹方程圆:
(x-0.5)^2+(y-0.5)^2=1.5