y=tan(x+y)求dy

问题描述:

y=tan(x+y)求dy

dy=d[tan(x+y)]=(dx+dy)/[cos(x+y)]^2

dy*[cos(x+y)]^2=dx+dy,再移项,得
-dy*[sin(x+y)]^2=dx
所以
dy=-dx/[sin(x+y)]^2