y=tan(x+y)求dy
问题描述:
y=tan(x+y)求dy
答
dy=d[tan(x+y)]=(dx+dy)/[cos(x+y)]^2
即
dy*[cos(x+y)]^2=dx+dy,再移项,得
-dy*[sin(x+y)]^2=dx
所以
dy=-dx/[sin(x+y)]^2