若数列{an}满足a1=2,an+an+1=3tX2n(2的n次方),t为常数.却数列{an}前2011项的和

问题描述:

若数列{an}满足a1=2,an+an+1=3tX2n(2的n次方),t为常数.却数列{an}前2011项的和

S2011=a1+a2+a3+.+a2011
=a1+(a2+a3)+(a4+a5)+……+(a2010+a2011)
=2+3t(2^2+2^4+2^6+……+2^2010)
=2+3t(4^1+4^2+4^3+……+4^1005)
=2+3t4(1-4^1005)/(1-4)
=4^1006t+2-t.