如图,在直角梯形ABCD中,∠ABC=∠BAD=90°,AB=16,对角线AC与BD交于点E,过E作EF⊥AB于点F,O为边AB的中点,且FE+EO=8.求AD+BC的值.

问题描述:

如图,在直角梯形ABCD中,∠ABC=∠BAD=90°,AB=16,对角线AC与BD交于点E,过E作EF⊥AB于点F,O为边AB的中点,且FE+EO=8.求AD+BC的值.

设EF=x,BF=y,
∵FE+EO=8,
∴OE=8-x,
而AB=16,O为边AB的中点,
∴OF=8-y,
∵EF⊥AB,
∴∠OFE=90°,
∴OE2=OF2+EF2,即(8-x)2=(8-y)2+x2
∴16x=16y-y2
又∵∠ABC=∠BAD=90°,即AD∥EF∥BC,
∴△BEF∽△BDA,△AEF∽△ACB,

EF
AD
=
BF
BA
EF
BC
=
AF
AB

AD
x
=
16
y
①,
BC
x
=
16
16−y
②,
①+②得,
AD+BC
x
=16•
16
y(16−y)

∴AD+BC=16x•
16
16y−y2
=16.