23.式子a(1/b+1/c)+b(1/c+1/a)+c(1/a+1/b)有意义且值为-3
问题描述:
23.式子a(1/b+1/c)+b(1/c+1/a)+c(1/a+1/b)有意义且值为-3
证明:(1)abc≠0,且a^2+b^2+c^2-ab-bc-ca=0 =/=>a(1/b+1/c)+b(1/c+1/a)+c(1/a+1/b)
有意义且值为-3 (2)
a+b+c=0 =/=>a(1/b+1/c)+b(1/c+1/a)+c(1/a+1/b)有意义且值为-3
(3)abc≠0,a^2+b^2+c^2-ab-bc-ca=0,且a+b+c=0 =/=>a(1/b+1/c)+b(1/c+1/a)+c
(1/a+1/b)有意义且值为-3
24.(a+b)/(c+d)=√(a^2+b^2)/√(c^2+d^2)
证明:(1)a/b=c/d,且b,d 均为正数 ==> (a+b)/(c+d)=√(a^2+b^2)/√(c^2+d^2)(2)
a/b=c/d,且b,d 均为负数 ==> (a+b)/(c+d)=√(a^2+b^2)/√(c^2+d^2)
答
暂无优质回答,请稍候...