求c,使lim(x趋近正无穷)(x+c/x-c)^x=∫(负无穷,c)te^2tdt

问题描述:

求c,使lim(x趋近正无穷)(x+c/x-c)^x=∫(负无穷,c)te^2tdt
这是定积分题目 括号里是表示范围

左边=(x+c/x-c)^x=[1+2c/(x-c)]^x=[1+2c/(x-c)]^[(x-c)/2c]*2cx/(x-c)x趋于正无穷时 原式 = e^[2cx/(x-c)] = e^2c右边=(1/2)∫tde^2t=(1/2)[te^2t|(负无穷到C) - ∫(负无穷到C)e^2tdt]=(C/2 - 1/4)e^2c所以C/2 -...