若(m-3)^2+(3n-1)^2=0,求m^2004,n^2005的值
问题描述:
若(m-3)^2+(3n-1)^2=0,求m^2004,n^2005的值
答
因为(m-3)^2大于等于0
(3n-1)^2大于等于0,而(m-3)^2+(3n-1)^2=0
所以(m-3)^2=0
(3n-1)^2=0,即
m=3,n=1/3,所以m*n=1
如果但求m^2004,n^2005的值的话一般不会出那样的题,我感觉题目应该是这两个数的乘积
m^2004*n^2005=(m*n)^2004*n=1*1/3=1/3