若x+y=10,x3+y3=100,则x2+y2=_.
问题描述:
若x+y=10,x3+y3=100,则x2+y2=______.
答
x3+y3=(x+y)(x2-xy+y2),
∴x2-xy+y2=10,
∵x+y=10,
∴x2+2xy+y2=100,
∴2xy=100-(x2+y2),把xy=x2+y2-10,代入得:100-(x2+y2)=2(x2+y2-10)=2(x2+y2)-20,
3(x2+y2)=120,
∴x2+y2=40.
故答案为:40.