如图在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF⊥AC于点F. 求证:∠B=∠C.
问题描述:
如图在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF⊥AC于点F.
求证:∠B=∠C.
答
∵AD平分∠BAC,DE⊥AB,DF⊥AC,
∴DE=DF,∠BED=∠CFD=90°,
∵D是BC的中点,
∴BD=CD(3分)
在Rt△BDE和Rt△CDF中
∵DE=DF,
DB=DC,
∴Rt△BDE≌Rt△CDF(HL)(6分)
∴∠B=∠C(8分)