设关于x的一元二次方程x2+2ax+b2=0.若a是从区间[0,3]任取一个数,b是从区间[0,2]任取一个数,上述方程有实根的概率是(  ) A.14 B.12 C.34 D.23

问题描述:

设关于x的一元二次方程x2+2ax+b2=0.若a是从区间[0,3]任取一个数,b是从区间[0,2]任取一个数,上述方程有实根的概率是(  )
A.

1
4

B.
1
2

C.
3
4

D.
2
3

如图,所有的基本事件对应集合Ω={(a,b)|0≤a≤3,0≤b≤2},构成的区域为如图的矩形OABC及其内部,其面积为S=3×2=6;设事件A=“方程x2+2ax+b2=0有实根”∵△=(2a)2-4×1×b2≥0,结合a、b都是非负数,解得a≥...