∫ln(1+x^2)xdx怎么积分?

问题描述:

∫ln(1+x^2)xdx怎么积分?

∫ln(1+x²)dx
=xln(1+x²) - ∫xd[ln(1+x²)]
=xln(1+x²) - ∫2x²/(1+x²) dx
=xln(1+x²) - 2∫[1- 1/(1+x²)]dx
=xln(1+x²) - 2∫dx + 2∫1/(1+x²)dx
=xln(1+x²) - x² + 2arctanx + C