(1/2+1/3+1/4+1/5+1/6+.+1/2013)*(1+1/2+..+1/2012)-(1+1/2+1/3+1/4+...+1/2013)*(1/2+.+1/2012)(1/2+1/3+1/4+1/5+1/6+...+1/2013)*(1+1/2+1/3+1/4...+1/2012)-(1+1/2+1/3+1/4+...+1/2013)*(1/2+1/3+1/4+...+1/2012)
问题描述:
(1/2+1/3+1/4+1/5+1/6+.+1/2013)*(1+1/2+..+1/2012)-(1+1/2+1/3+1/4+...+1/2013)*(1/2+.+1/2012)
(1/2+1/3+1/4+1/5+1/6+...+1/2013)*(1+1/2+1/3+1/4...+1/2012)-(1+1/2+1/3+1/4+...+1/2013)*(1/2+1/3+1/4+...+1/2012)
答
=a*b-(1+a)(b-1)=a*b-(b-1+a*b-a)=a-b+1=(1/2+1/3+1/4+1/5+1/6+...+1/2013)-(1+1/2+1/3+1/4...+1/2012)+1=1/2013
答
设1/2+1/3+1/4+...+1/2012=A
那么上述式
=(A+1/2013)*(A+1)-(1+A+1/2013)*A
分解后
=A²+(1+1/2013)A+1/2013-A²-(1+1/2013)A
=1/2013