1/(1+x^0.5) dx的积分怎么算

问题描述:

1/(1+x^0.5) dx的积分怎么算

1/(1+x^0.5)dx
=x^0.5/[x^0.5*(1+x^0.5)]dx
因为:1/x^0.5dx=2d(x^0.5)
所以:
=2*x^0.5/(1+x^0.5)d(x^0.5)
=2*{1-1/(1+x^0.5)}d(x^0.5)
=2d(x^0.5)-2/(1+x^0.5)d(1+x^0.5)
现在积分,得:
=2x^0.5-2ln(1+x^0.5)+C

令x^0.5=t
原式=2tdt/(t+1)
=2t-2ln/t+1/+c

换元法
令1+x^0.5=t,得x=(t-1)^2
原式变为(2-2/t)dt的积分
易得2t-2lnt+C
带回x,得
2(1+x^0.5)-2ln(1+x^0.5)+C