一数学问题:已知△ABC中,AB=AC,圆O是△ABC的外接圆,D是弧AB上一点,连DA、DB、DC.若角BAC=60°,则线段DC、AD、BD之间的数量关系为?

问题描述:

一数学问题:已知△ABC中,AB=AC,圆O是△ABC的外接圆,D是弧AB上一点,连DA、DB、DC.若角BAC=60°,则线段DC、AD、BD之间的数量关系为?
(求详细证明过程)

DC=AD+BD证明:延长AD至E使DE=DB,连接EB∵⊿ABC是有一个角为60º的等腰三角形∴⊿ABC是等边三角形∴∠ABC=60º ∠ACB=60º∠EDB=∠ACB=60º 【学过圆内接四边形,由外角得出;没学过也可以由圆周角的...