已知△ABC的内角A,B及其对边a,b满足a+b=acotA+bcotB,求内角C.

问题描述:

已知△ABC的内角A,B及其对边a,b满足a+b=acotA+bcotB,求内角C.

由已知及正弦定理,有sinA+sinB=sinA•

cosA
sinA
+sinB•
cosB
sinB
=cosA+cosB,
∴sinA-cosA=cosB-sinB
∴sin(A-
π
4
)=sin(B+
4
),
∵0<A<π,0<B<π
∴-
π
4
<A-
π
4
4
<B+
4
4

∴A-
π
4
+B+
4
=π,
∴A+B=
π
2
,C=π-(A+B)=
π
2

答案解析:先利用正弦定理题设等式中的边转化角的正弦,化简整理求得sin(A-
π
4
)=sin(B+
4
),,进而根据A,B的范围,求得A-
π
4
和B+
4
的关系,进而求得A+B=
π
2
,则C的值可求.
考试点:正弦定理的应用;三角函数的恒等变换及化简求值.
知识点:本题主要考查了正弦定理的应用.解题过程中关键是利用了正弦定理把边的问题转化为角的问题.