已知椭圆的中心在坐标原点,椭圆的右焦点F2与抛物线y方=4x的焦点重合,且椭圆经过点P(1,2/3)

问题描述:

已知椭圆的中心在坐标原点,椭圆的右焦点F2与抛物线y方=4x的焦点重合,且椭圆经过点P(1,2/3)
(1)求这个椭圆的方程
(2)求以这个椭圆的焦点为顶点,顶点为焦点的双曲线方程

1、先设椭圆的标准方程,F2的坐标设为(a,0)
2、把(1,2/3),(a,0)代入椭圆标准方程,(a,0)代入抛物线.
3、两个方程联立.
4、求出a,b,得出椭圆方程.
这儿说明一下,因为椭圆的中心在原点,所以左、右焦点是一点在X轴上的,有这个思路后,后面的都是套公式了.