曲面积分 求(xdydz + ydzdx + zdxdy) /[(x^2+y^2+z^2)^(3/2)]求∫∫(xdydz + ydzdx + zdxdy) /[(x^2+y^2+z^2)^(3/2)]积分区域是(1) 半径为a的上半球的上表面(z>0的上表面)(2)(x^2)/4 + (y^2)/9 + (z^2)/25 = 1 (z >= 0 的上表面)第一问我是带入成 a^(-3)*∫∫[(a^2-x^2-y^2)^(1/2)]dxdy 区域是x^2+y^2 第一问我是带入成 a^(-3)*∫∫[(a^2-x^2-y^2)^(1/2)]dxdy 区域是x^2+y^2

问题描述:

曲面积分 求(xdydz + ydzdx + zdxdy) /[(x^2+y^2+z^2)^(3/2)]
求∫∫(xdydz + ydzdx + zdxdy) /[(x^2+y^2+z^2)^(3/2)]
积分区域是
(1) 半径为a的上半球的上表面(z>0的上表面)
(2)(x^2)/4 + (y^2)/9 + (z^2)/25 = 1 (z >= 0 的上表面)
第一问我是带入成 a^(-3)*∫∫[(a^2-x^2-y^2)^(1/2)]dxdy 区域是x^2+y^2
第一问我是带入成 a^(-3)*∫∫[(a^2-x^2-y^2)^(1/2)]dxdy 区域是x^2+y^2