y=sinxcosx+根号3cos^2 x-根号3/2的最小正周期是?

问题描述:

y=sinxcosx+根号3cos^2 x-根号3/2的最小正周期是?

y=sinxcosx 根号3cos^2 x-根号3/2
=1/2sin2x 根3/2(2cos^2x-1)
=1/2sin2x 根3/2cos2x
=sin2xcos60 cos2xsin60
=sin(2x 60)
最小正周期T=2∏/2=∏

y=sinxcosx+根号3cos^2 x-根号3/2
=1/2sin2x+根3/2(2cos^2x-1)
=1/2sin2x+根3/2cos2x
=sin2xcos60+cos2xsin60
=sin(2x+60)
最小正周期T=2∏/2=∏