已知a^2-3a-1=0,求a^4+1/ a^4等于多少?
问题描述:
已知a^2-3a-1=0,求a^4+1/ a^4等于多少?
( 备注:a的4次方+(1/a的4次方)=[a^2+(1/a^2)]^2-2 ={[a+(1/a)]^2-2}^2-2 )
答
a^2-3a-1=0
两边同时除以a得a-1/a=3
[a^2+(1/a^2)]^2-2 =={[a-(1/a)]^2+2}^2-2=109