如果an是由正数组成的等比数列,且a4*a5=8,则log2a1+log2a2+...+log2a8=

问题描述:

如果an是由正数组成的等比数列,且a4*a5=8,则log2a1+log2a2+...+log2a8=

设an=q^(n-1)*a1;则a4*a5=q^7*a1^2=8;而log2a1+log2a2+...+log2a8=log2(a1*a2*...*a8)=log2(q^28*a1^8)=log2(8^4)=12

log(2)[a1]+log(2)[a2]+…+log(2)[a8]
=log(2)[(a1)×(a2)×(a3)×…×(a8)]
因为a1a8=a2a7=a3a6=a4a5=8
则原式=log(2)[8×8×8×8]=12