等比数列{an}中,q=2,log2a1+log2a2+…+log2a10=25,则a1+a2+…+a10等于(  )A. 237B. 10214C. 10234D. 250

问题描述:

等比数列{an}中,q=2,log2a1+log2a2+…+log2a10=25,则a1+a2+…+a10等于(  )
A. 237
B.

1021
4

C.
1023
4

D. 250

根据对数的运算性质,得
log2a1+log2a2+…+log2a10=log2(a1a2a3…a9a10)=log2(a1a105=25,
∴(a1a105=225
∵q=2,
∴a1=

1
4

∴a1+a2+…+a10=
1
4
(1−210)
1−2
=
1023
4

故选:C.
答案解析:由题意可得log2(a1a105=25,可得(a1a105=225,解得a1,再由等比数列的前n项和公式,运算求得a1+a2+…+a10 的结果.
考试点:等比数列的性质.
知识点:本题主要考查对数函数的运算性质,等比数列的定义和性质,等比数列的通项公式、等比数列的前n项和公式的应用,属于中档题.