等比数列{an}中,q=2,log2a1+log2a2+…+log2a10=25,则a1+a2+…+a10等于( ) A.237 B.10214 C.10234 D.250
问题描述:
等比数列{an}中,q=2,log2a1+log2a2+…+log2a10=25,则a1+a2+…+a10等于( )
A. 237
B.
1021 4
C.
1023 4
D. 250
答
根据对数的运算性质,得
log2a1+log2a2+…+log2a10=log2(a1a2a3…a9a10)=log2(a1a10)5=25,
∴(a1a10)5=225,
∵q=2,
∴a1=
,1 4
∴a1+a2+…+a10=
=
(1−210)1 4 1−2
1023 4
故选:C.