一个几何体的三视图如图所示,其中正视图中△ABC是边长为2的正三角形,俯视图为正六边形,求该几何体的侧视图的面积.

问题描述:

一个几何体的三视图如图所示,其中正视图中△ABC是边长为2的正三角形,俯视图为正六边形,求该几何体的侧视图的面积.

此几何体为一个正六棱锥,其顶点在底面的投影是底面的中心
由于正视图中△ABC是边长为2的正三角形,其高为

3
,即侧视图中三角形的高为
3

又中心到边为的距离为
3
2
,故侧视图中三角形的底边长为
3

故侧视图的面积为
1
2
×
3
×
3
=
3
2

答案解析:由三视图及题设条件知,此几何体为一个正六棱锥,其标点在底面的投影是底面的中心,底面是一个正六边形,欲求侧视图的面积,由于其是一个等腰三角形,其高为棱锥的高,底面边长是六边形相对边长的距离,求出此两量的长度,即可求其面积.
考试点:由三视图求面积、体积.
知识点:本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是正六棱锥的侧视图的面积,由三角形面积公式直接求即可.三视图的投影规则是:“主视、俯视 长对正;主视、左视高平齐,左视、俯视 宽相等”,三视图是新课标的新增内容,在以后的高考中有加强的可能.