16.x,y,z为实数,设A=x^2-2y+π/2,B=y^2-2z+π/3,C=x^2-2x+π/6,证明:A,B,C中至少有一个大于零 17.证明:(ax+by)^2+(ay-bx)^2+c^2x^2+c^2y^2==>(a^2+b^2+c^2)(x^2+y^2)

问题描述:

16.x,y,z为实数,设A=x^2-2y+π/2,B=y^2-2z+π/3,C=x^2-2x+π/6,证明:A,B,C中至少有一个大于零
17.证明:(ax+by)^2+(ay-bx)^2+c^2x^2+c^2y^2==>(a^2+b^2+c^2)(x^2+y^2)

16、证明:由于:A+B+C=(x²-2y+π/2)+(y²-2z+π/3)+(z²-2x+π/6)=(x²-2x+1)+(y²-2y+1)+(z²-2z+1)+(π/2+π/3+π/6-3)=(x-1)²+(y-1)²+(z-1)²+(π-3)因为(x-1)²、(...