如图,在三角形ABC中,∠A=60度,BD、CE分别是∠ABC、∠ACB的平分线,BD、CE相交于点O,求证:OD=OE

问题描述:

如图,在三角形ABC中,∠A=60度,BD、CE分别是∠ABC、∠ACB的平分线,BD、CE相交于点O,求证:OD=OE

证明:
作OM⊥AB于M,ON⊥AC于N,OP⊥BC于P
∵BD平分∠ABC
∴OM=OP
∵CE平分∠ACB
∴ON=OP
∴OM=ON
∵∠A=60º
∴∠ABC+∠ACB=120º
∴∠OBC+OCB=½(∠ABC+∠ACB)=60º
∴∠EOD=∠BOC=120º
∵∠AMO+∠ANO=90º+90º=180º
∴∠A+∠MON=180º
∴∠MON=120º=∠EOD
∴∠MOE=∠NOD【在同一顶点的两个角相等,相当于一个角绕此点旋转,两边旋转角度相等】
又∵∠EMO=∠DNO=90º,OM=ON
∴⊿EMO≌⊿DNO(ASA)
∴OD=OE