log(a)(b)=log(c)(b) /log(c)(a) 怎么证log(a)(b)=log(c)(b) /log(c)(a)怎么证
问题描述:
log(a)(b)=log(c)(b) /log(c)(a) 怎么证
log(a)(b)=log(c)(b) /log(c)(a)怎么证
答
b=a^[log(a)(b)]=c^[log(c)(b)]
a=c^[log(c)(a)]
所以 b={c^[log(c)a]}^[log(a)(b)]
=c^{[log(c)(a)]*[log(a)(b)]}
所以log(c)(b)]=[log(c)(a)]*[log(a)(b)]
所以log(a)(b)=log(c)(b) /log(c)(a)
答
若有对数log(a)(b)设a=n^x,b=n^y 则 log(a)(b)=log(n^x)(n^y) 根据 对数的基本公式 log(a)(M^n)=nloga(M) 和 基本公式log(a^n)M=1/n×log(a) M 易得 log(n^x)(n^y)=y/x 由 a=n^x,b=n^y 可得 x=log(n)(a),...