8个乘法公式是那些?一共的.

问题描述:

8个乘法公式是那些?
一共的.

1.基本公式就是最常用、最基础的公式,可以由此而推导出其它公式.
完全平方公式:(a±b)2=a2±2ab+b2,
平方差公式:(a+b)(a-b)=a2-b2,
立方和(差)公式:(a±b)(a2mab+b2)=a3±b3.
2. 公式的推广:
①多项式平方公式:(a+b+c+d)2=a2+b2+c2+d2+2ab+2ac+2ad+2bc+2bd+2cd.
即:多项式的平方等于各项的平方和,加上每两项积的2倍.
②二项式定理:(a±b)3=a3±3a2b+3ab2±b3,
(a±b)4=a4±4a3b+6a2b2±4ab3+b4,
(a±b)5=a5±5a4b+10a3b2 ±10a2b3+5ab4±b5,
…………
注意观察右边展开式的项数、指数、系数、符号的规律.
③由平方差、立方和(差)公式引申的公式
(a+b)(a3-a2b+ab2-b3)=a4-b4,
(a+b)(a4-a3b+a2b2-ab3+b4)=a5+b5,
(a+b)(a5-a4b+a3b2-a2b3+ab4-b5)=a6-b6,
…………
注意观察左边第二个因式的项数、指数、系数、符号的规律.
在正整数指数的条件下,可归纳如下:设n为正整数
⑴(a+b)(a2n-1-a2n-2b+a2n-3b2-…+ab2n-2-b2n-1)=a2n-b2n,
⑵(a+b)(a2n-a2n-1b+a2n-2b2-…-ab2n-1+b2n)=a2n+1+b2n+1,
类似地:
⑶(a-b)(an-1+an-2b+an-3b2+…+abn-2+bn-1)=an-bn.
3. 公式的变形及其逆运算
由(a+b)2=a2+2ab+b2 得 a2+b2=(a+b)2-2ab;(a-b)2=(a+b)2-4ab.
由 (a+b)3=a3+3a2b+3ab2+b3=a3+b3+3ab(a+b)得 a3+b3=(a+b)3-3ab(a+b).
由公式的推广可知:当n为正整数时,an-bn能被a-b整除;
a2n+1+b2n+1能被a+b整除; a2n-b2n能被a+b及a-b整除.

(ab)2=a2b2
(a+b)2=a2+b2+2ab或(a-b)2=a2+b2-2ab

(a+b+c)2=a2+b2+c2+2ab+2ac+2bc
(a+b)(a-b)=a2-b2
然后就是4个倒过来的逆运用

1.a2-b2=(a+b)(a-b)2.a2+2ab+b2=(a+b)23.a2-2ab+b2=(a-b)24.a3+b3=(a+b)(a2-ab+b2)5.a3-b3=(a-b)(a2+ab+b2)6.a3+3a2b+3ab2+b3=(a+b)37.a3-3a2b+3ab2-b3=(a-b)38.a2+b2+c2+2ab+2bc+2ca=(a+b+c)2