1/2x4+1/3x5+1/4x6+1/5x7+...+1/97x99=?RT

问题描述:

1/2x4+1/3x5+1/4x6+1/5x7+...+1/97x99=?
RT

裂项求和呀
1/n(n+2)=1/2[1/n-1/(n+2)]
所以1/(2x4)=1/2(1/2-1/4)
1/(3x5)=1/2(1/3-1/5)
……
所以原式=1/2[(1/2-1/4)+(1/3-1/5)+(1/4-1/6)+(1/5-1/6)+…+(1/96-1/98)+(1/97-1/99)]
=1/2[]1/2+1/3-1/98-1/99]
=1/2(48/98+32/99)
=12/49+16/99

=1/2[1/2-1/4+1/3-1/5+1/4-1/6+1/5-1/7+……1/96-1/98+1/97-1/99]
=1/2[1/2+1/3-1/98-1/99]
=12/49+16/99

应该是1/(2*4)形式吧
1/(2*4)=1/2*(1/2-1/4),1/(3*5)=1/2*(1/3-1/5)……
所有项都按此拆分
则原式=1/2*(1/2+1/3-1/98-1/99)=355/4851

应该是1/(2*4)形式吧
1/(2*4)=1/2*(1/2-1/4),1/(3*5)=1/2*(1/3-1/5)……
所有项都按此拆分
则原式=1/2*(1/2+1/3-1/98-1/99)=355/4851