平行六面体ABCD-A1B1C1D1,棱长都等1,∠A1AB=A1AD=∠BAD=3/派,则A1C为

问题描述:

平行六面体ABCD-A1B1C1D1,棱长都等1,∠A1AB=A1AD=∠BAD=3/派,则A1C为

向量A1C=A1A+AC=A1A+AB+BC,
两边平方,
向量A1C^2=A1A^2+AB^2+BC^2+2A1A·AB+2AB·BC+2BC·A1A
=1+1+1+2*1*1*cos120°+2*1*1*cos60°+2*1*1*cos120°
=3-1+1-1
=2,
∴|A1C|=√2。

∵∠A1AB=∠A1AD=∠BAD=π/3∴A1A在底面的射影在AC上∠CAB=π/6有三余弦定理得cos∠A1AB=cos∠CABcos∠A1ACcos∠A1AC=cosπ/3cosπ/6=√3/3在三角形ABC中AC²=AB²+BC²-2AB×BCcos2π/3=1+1-2×1×...