已知每条棱长都为3的直平行六面体ABCD-A1B1C1D1中,∠BAD=60°,长为2的线段MN的一个端点M在DD1上运动,另一个端点N在底面ABCD上运动.则MN中点P的轨迹与该直平行六面体表面所围成的几何体中较
问题描述:
已知每条棱长都为3的直平行六面体ABCD-A1B1C1D1中,∠BAD=60°,长为2的线段MN的一个端点M在DD1上运动,另一个端点N在底面ABCD上运动.则MN中点P的轨迹与该直平行六面体表面所围成的几何体中较小体积值为( )
A.
π 9
B.
2π 9
C.
π 3
D.
4π 9
答
如图可得,端点N在正方形ABCD内运动,(N与D不重合)连接N点与D点
由ND,DM,MN构成一个直角三角形,
设P为MN的中点,根据直角三角形斜边上的中线长度为斜边的一半可得
不论△MDN如何变化,P点到D点的距离始终等于1.
N与D重合也满足题意,∠ADC=120°
故P点的轨迹是一个以D中心,半径为1的半球的
. 1 3
所以所求体积为:
×1 3
×1 2
π=4 3
,2π 9
故选B.