设x>0,y.0,A=x+y/1+x+y,B=x/1+x=y/1+y,比较A,B大小
问题描述:
设x>0,y.0,A=x+y/1+x+y,B=x/1+x=y/1+y,比较A,B大小
答
A=(x+y)/(1+x+y)=1-1/(1+x+y)
B=x/(1+x)+y/(1+y)=(x+2xy+y)/[(1+x)(1+y)
=(x+2xy+y)/(1+x+y+xy)=1-(1-xy)/(1+x+y+xy)
因为(1-xy)/(1+x+y+xy)所以-(1-xy)/(1+x+y+xy)>-1/(1+x+y)
故B>A