有一串数1,1,2,3,5,8,…,从第三个数起,每个数都是前两个数之和,在这串数的前1997个数中,有______个是5的倍数.

问题描述:

有一串数1,1,2,3,5,8,…,从第三个数起,每个数都是前两个数之和,在这串数的前1997个数中,有______个是5的倍数.


答案解析:观察题干发现:“从第三个数起,每个数都是前两个数之和”说明从第三个数起,每个数除以5的余数都是前两个数除以5的余数之和,所以我们只需排出每个数除以5的余数,然后找出余数的规律就行了:1÷5=0余1,所以第三个数除以5的余数就是 1+1=2;2÷5=0余2,所以第四个数除以5的余数是 1+2=3;3÷5=0余3,所以第五个数除以5的余数是 (2+3)÷5=1余0;0÷5=0余0,所以第六个数除以5的余数是 3+0=3;…以此类推,余数排列如下:1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1,2,3…发现规律:每5个余数为一周期,每一个周期的第5个数除以5的余数为0,即是5的倍数,所以1997÷5=399个周期…2 即这串数的前1997个数中有 399个是5的倍数.
考试点:数字串问题.
知识点:观察数列,找出此数列的余数规律,然后运用找出的规律解决问题.