椭圆E的方程是x²/2+y²/4=1.射线y=√2x(x≥0﹚与椭圆E的交点为A,过A 做两直线分别与x轴交于B,C两点,与椭圆分别交于M,N两点,若△ABC是以A为顶点的等腰三角形.(1)求证:直线MN的斜率为定值.(2)求S△AMN的最大值.

问题描述:

椭圆E的方程是x²/2+y²/4=1.射线y=√2x(x≥0﹚与椭圆E的交点为A,过A 做两直线分别与x轴交于B,C两点,与椭圆分别交于M,N两点,若△ABC是以A为顶点的等腰三角形.(1)求证:直线MN的斜率为定值.
(2)求S△AMN的最大值.

解: 易知 A(1,√2)。若△ABC是以A为顶点的等腰三角形,等价于∠ABC=若△ABC是以A为顶点的等腰三角形ACB: 也就是说 kAB = -kAC...1#
设M

易知 A(1,√2).若△ABC是以A为顶点的等腰三角形,等价于∠ABC=若△ABC是以A为顶点的等腰三角形ACB:也就是说 kAB = -kAC...1#设M(x1,y1); N(x2,y2),设直线AB:y = k(x-1)+√2 ;直线 CA y = -k(x-1) +√2AC 代入椭圆 2x...