若绝对值ab-4+(b-1)²=0,试求1/ab+1/(a+3)(b+3)+1/(a+6)(b+6)+……+1/(a+999)(b+999)的值.
问题描述:
若绝对值ab-4+(b-1)²=0,试求
1/ab+1/(a+3)(b+3)+1/(a+6)(b+6)+……+1/(a+999)(b+999)的值.
答
绝对值ab-4+(b-1)²=0
ab-4=0
b-1=0
解得:
a=4;b=1
1/ab+1/(a+3)(b+3)+1/(a+6)(b+6)+……+1/(a+999)(b+999)
=1/4+1/7*4+1/10*7+.1/1003*1000
=1/3*(1-1/4+1/4-1/7+.+1/1000-1/1003)
=1/3*(1-1/1003)
=1/3*1002/1003
=334/1003