y=1/cosx+根号(2sinx+1) 求值域错了 是定义域

问题描述:

y=1/cosx+根号(2sinx+1) 求值域
错了 是定义域

首先,cosx≠0,x∉π/2+kπ,根号(2sinx+1)≥0,sinx≥0.5,x∈【π/6+2kπ,5π/6+2kπ】,所以x∈【π/6+2kπ,5π/6+2kπ】,且x∉π/2+kπ

首先cosX≠0 得x≠½π+kπ,即kπ+-½π<x½π+kπ
且2sinx≥-1
即sinX≥-½
2kπ-1/6π ≤x≤ 7/6π+2kπ
两集合相交
定义域为[ 2kπ - π/6, 2kπ + π/2)U(2kπ + π/2,2kπ + 7π/6] ,(k∈Z)

定义域为[ 2kπ - π/6, 2kπ + π/2)U(2kπ + π/2,2kπ + 7π/6] ,(k∈Z)

cosx!=0 x!=PI/2+kPI k = 0,1,2,3...
2sinx+1>=0 -PI/6+2kPI

【1,+无穷)

根据题意,
定义域应满足以下两个条件:
cosx≠0
2sinx+1≥0
解得
x≠kπ+π/2
2kπ-π/6≤x≤2kπ+5π/6

2sinx+1>=0
sinx>=-1/2
2kpi+pi/6

y=1/cosx+√(2sinx+1)
cosx≠0且2sinx+1≥0
x≠kπ+π/2且2kπ-π/3≤x≤2kπ+4π/3(k∈Z)
即2kπ-π/6≤x≤2kπ+7π/6且x≠2kπ+π/2(k∈Z)